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Vortex dynamics in coherently coupled Bose-Einstein condensates
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In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description
is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices
experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid.
A similar picture applies to vortices in a two-component, two-dimensional uniform Bose-Einstein condensate
(BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces
an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense.
Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line
joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although
two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such
behavior is absent for a vortex in one component because of the nonuniform vortex phase. Instead the coherent
Rabi coupling induces a periodic vorticity transfer between the two components.
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I. INTRODUCTION

Onsager and Feynman revolutionized superfluid physics
with the concept of quantized vortex lines. Originally, this idea
was introduced to describe superfluid 4He, but it also applies
to the more recent ultracold atomic Bose-Einstein condensates
(BECs). Initial vortex research emphasized the equilibrium
configurations, for example, in rotating superfluid BECs where
imaging an expanded condensate provided direct visualization
of the vortex arrays.

In certain cases for atomic BECs, however, the dynamics of
one or two vortices is not only calculable but also observable
experimentally in real time, providing a rare opportunity to
study such time-dependent phenomena. Note that the analo-
gous vortex dynamics in superfluid 4He is largely inaccessible
owing to the very small vortex core. Here we analyze the effect
of coherent rf Rabi coupling on the dynamics of one or two
vortices in a two-component BEC mixture.

The physics of two coupled Bose-Einstein condensates
has been of great interest since the early JILA experiments
using two hyperfine states of 87Rb [1]. Initially, these coupled
condensates had the usual mean-field interactions, in which
case the typical Gross-Pitaevskii (GP) equation contains two
interaction terms proportional to the two local particle densities
n1 and n2. Correspondingly, the interaction energy density is
Eint = 1

2

∑
ij=1,2 gij ninj , where nj = |ψj |2 is the condensate

density for component j and gij is a set of interaction
parameters. Since this interaction energy depends solely on
the densities, it carries no information on the relative phase of
the two condensates.

Subsequently, the JILA group added coherent rf Rabi fields
involving direct linear off-diagonal coupling of the two order
parameters [2–4]. In the time-dependent GP equation for

*fetter@stanford.edu
†pietro.massignan@icfo.es

(say) ψ1, there is a term with ψ2 proportional to the Rabi
frequency �, which is related to the strength of the rf coupling
fields. The corresponding coherent rf Rabi interaction energy
density E� = − 1

2h̄��†σx� = − 1
2h̄�(ψ†

1ψ2 + ψ
†
2ψ1) is very

different from the more familiar mean-field form given above.
As a result, the two components now form a coupled two-level
system with dynamics analogous to coherent motion on a
Bloch sphere.

In 2002 [5], Son and Stephanov pointed out the crucial role
of such coherent rf Rabi coupling, emphasizing the presence
of a narrow domain wall between two vortices, whose dy-
namics closely mimics string-breaking processes in quantum
chromodynamics. With the density-phase representation of the
condensate order parameters ψj = √

nj eiSj , the coherent cou-
pling energy density becomes E� = −h̄�

√
n1n2 cos(S1 − S2),

involving the phase difference between the two condensates.
See also Ref. [6], which studies rotating two-component
condensates with rf Rabi coupling. Note that this long-
wavelength rf coupling is spatially uniform, in contrast to
the finite-wavelength Raman coupling introduced by Spiel-
man [7,8], where the spatial dependence of the coupling term
is significant.

The Lagrangian density is L = T − EGP, where T =
1
2 ih̄[�†∂t� − (∂t�

†)�] and the remaining term is the usual
GP energy density functional, including the kinetic energy,
the trap energy, the interaction energy, and the Rabi coupling
energy. Expressed in terms of number density and phase, the
Lagrangian density becomes

L =
∑
i=1,2

[
−h̄ni Ṡi − h̄2

2M
(∇√

ni)
2 − h̄2

2M
ni(∇Si)

2

]

+h̄�
√

n1n2 cos(S1 − S2) − 1

2
gn2 + δg12n1n2, (1)

where n = n1 + n2 is the total number density. Here and
throughout, the trap is omitted (except for Secs. VI and VII)
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and this simple model assumes interaction constants g11 =
g22 = g and δg12 = g − g12 > 0. These parameters are ap-
propriate for 87Rb and imply that the uniform system does not
phase separate. This form of the Lagrangian density is useful
for studying the dynamics of vortices in coherently coupled
BECs. Much of the present analysis will focus on a tightly
confined effectively two-dimensional condensate, in which
case nj represents a two-dimensional particle density with
dimension of an inverse area and the corresponding coupling
constants are renormalized by the tight axial harmonic trapping
potential g → g2D = g/(dz

√
2π ), where dz = √

h̄/(Mωz) is
the axial oscillator length. For simplicity, we will use g to
denote the two-dimensional coupling constant with units of
energy × area. Hence gM/h̄2 is dimensionless.

Section II briefly reviews the dynamics of classical recti-
linear vortices in a single-component fluid. Section III then
rewrites the dynamical equations in terms of forces arising
from intervortex potentials; it also derives the same vortex
dynamics for a one-component dilute BEC from a variational
Lagrangian formalism. Section IV summarizes the essential
features of the coherent coupling in a two-component BEC
from Ref. [5], focusing on the domain wall of relative phase.
These various features combine in Sec. V to describe the
dynamics of two vortices in coherently coupled uniform BECs
with one vortex in each component. Section VI studies instead
the dynamics for a single vortex in a trapped condensate, where
the coherent coupling induces periodic transfer of vorticity
between the two condensates. Section VII then investigates
the Josephson-like dynamics of the coherent transfer of
population between two coherently coupled condensates. In
the absence of a vortex, the population difference exhibits
familiar Rabi oscillation [2]. When a vortex is present in one
condensate, however, the lack of overall global phase leads to
a cancellation, and instead the vorticity transfers periodically
between the two components with no coherent population
transfer, in analogy with similar results for coherently coupled
annular condensates [9].

II. VORTEX DYNAMICS IN CLASSICAL
HYDRODYNAMICS

In thinking about vortex dynamics in two-dimensional
BECs, it is simplest to start from classical incompressible
hydrodynamics and focus on a set of point vortices at rj . Each
vortex generates its own circulating velocity field

vj (r) = qj

h̄

M

ẑ × (r − rj )

|r − rj |2 , (2)

where qj = ±1 characterizes the sense of circulation, which
is quantized in units of 2πh̄/M (alternatively, the velocity is
h̄/M times the gradient of the phase Sj ). A given vortex at r i

has a translational velocity

ṙ i =
∑
j �=i

vj (r i) =
∑
j �=i

qj

h̄

M

ẑ × (r i − rj )

|r i − rj |2 (3)

equal to the total velocity at its position induced by all the
other vortices (and, in principle, any additional imposed flow).

It is helpful to focus on two vortices at r1 and r2 separated
by a distance r12. Their dynamical equations lead to the

expected dynamics

ṙ1 = q2
h̄

M
ẑ × r1 − r2

|r1 − r2|2 , (4)

so that vortex 1 moves with the velocity induced at its location
by vortex 2. Similarly,

ṙ2 = q1
h̄

M
ẑ × r2 − r1

|r2 − r1|2 . (5)

If they have the same circulation with q1q2 = 1, they rotate
at fixed r12 around their joint center at an instantaneous
linear speed h̄/(Mr12) with a sense determined by their
individual circulations [equivalently, the angular velocity
around the common center is 2h̄/(Mr2

12)]. If they have
opposite circulations q1q2 = −1, they are called a vortex
pair or a vortex dipole and move uniformly at fixed r12

with translational velocity h̄/(Mr12) in the direction of the
flow between them. The Arizona group [10] has created such
vortex dipoles reproducibly in disk-shaped BECs and followed
their dynamical trajectories. The finite boundaries significantly
affect the motion, and the experiment observed one full cycle
of the vortex dipole orbits.

As seen below, the energy of two vortices in an unbounded
medium depends only on the distance between them, so that
both these dynamical motions maintain the total energy. This
behavior reflects the lack of any dissipative mechanism in
classical hydrodynamics.

In a uniform dilute Bose gas obeying the Gross-Pitaevskii
(GP) equation, the same result holds as long as the vortices are
well separated relative to the healing length ξ = h̄/

√
2Mng,

which characterizes the vortex core radius. Reference [11]
proved this result by direct examination of the time-dependent
GP equation, assuming that the time dependence arises
solely from the rigid motion of the vortices. This result is
not surprising, for the time-dependent GP equation implies
both the usual conservation of particles and a Bernoulli
equation for isentropic compressible flow; these two suffice
to describe classical inviscid hydrodynamics, including vortex
motion [12].

III. VORTEX RESPONSE TO APPLIED FORCE

From one perspective, Eq. (3) wholly suffices to describe
the motion of point vortices in a uniform two-dimensional
fluid, but it is instructive to generalize and think of effective
forces. Note the simple identity [13]

r
r2

= −∇ ln

(
1

r

)
, (6)

where ln(1/r) is essentially the Coulomb Green’s function in
two dimensions. This approach is equivalent to the use of a
stream function instead of a velocity potential. Define

Ṽij (r) = 2πh̄n qiqj

h̄

M
ln

(
1

r

)
= 2πh̄n Vij (r), (7)

where Vij (r) = qiqjh̄ ln(1/r)/M omits the dimensional factor
2πh̄n. Here, Ṽij (r) is the interaction energy between two point
vortices in two dimensions. Note that for two vortices with the
same sign q1q2 = 1, the interaction is repulsive and diverges
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to ∞ as r → 0, whereas for two vortices with opposite sign
q1q2 = −1, it is attractive and diverges to −∞ as r → 0.

In particular, again focus on two vortices in a one-
component fluid, in which case the equations of vortex motion
now become

q1 ṙ1 = − ẑ × ∇1V12(r12),

q2 ṙ2 = − ẑ × ∇2V12(r12). (8)

Apart from an overall factor, the quantity −∇1V12(r12) is
effectively the force F1 that vortex 2 exerts on vortex 1. Hence
Eq. (8) assumes the simple and physical form

q1 ṙ1 = ẑ × F1,

q2 ṙ2 = ẑ × F2 = −ẑ × F1, (9)

where F1 = −F2, since they arise from a central potential. It
says that each vortex moves perpendicular to the force F on
it, in a direction determined by qj ẑ × Fj . Such behavior is
often called the Magnus effect.

By inspection, the vector quantity q1r1 + q2r2 is conserved.
Also, Eqs. (4) and (5) show that the relative vector r12 =
r1 − r2 obeys the dynamical equation

ṙ12 = h̄

Mr2
12

(q1 + q2) ẑ × r12. (10)

If q1 = q2 = 1, then the two vortices precess around each
other at fixed separation with an angular velocity 2h̄/(Mr2

12)
in the positive sense, as found previously. If q1 = −q2 = 1 (a
vortex pair or vortex dipole), then r1 − r2 remains constant,
and Eq. (9) indicates that 1

2 (ṙ1 + ṙ2) = ẑ × F1, so that the
center of the pair moves uniformly.

The operation ẑ× allows these dynamical relations to be
rewritten as FM

j + Fj = 0, where

FM
j ≡ qj ẑ × ṙj (11)

is called the Magnus force. In this latter form, the vector sum
of all forces acting on the vortex must vanish, which thus
determines the motion of the vortex. Effectively, a vortex has
intrinsic angular momentum arising from its circulating flow
and acts like a gyroscope.

For subsequent reference, it is also useful to study the
behavior of two vortices in a uniform single-component,
two-dimensional BEC with the time-dependent Lagrangian
formalism, which is equivalent to Eq. (1) with only a single
uniform two-dimensional density n (ignoring the vortex core
structure) and phase S. Assume two vortices at r1 and r2 with
unit circulations q1 and q2 and total phase S = S1 + S2, where

Sj = qj arg[(x − xj ) + i(y − yj )] = qj arg(z − zj ), (12)

where arg(z) = z/|z| is the phase of the complex number z =
x + iy. Here, S1 and S2 refer to distinct vortices in the same
component. Based on this form for the phase arising from
each vortex, it is not hard to find the time-dependent term in
the Lagrangian

T = h̄πn(q1 ẑ × ṙ1 · r1 + q2 ẑ × ṙ2 · r2), (13)

which is unusual in depending linearly on the coordinate and
the velocity of each vortex.

The corresponding fluid velocity is v1 + v2, where vj

is given in Eq. (2), and the kinetic energy density is

1
2Mn(v1 + v2)2. Apart from the divergent self-energy of each
vortex, the interaction energy density is E12 = Mn v1 · v2 =
(q1q2h̄

2n/M)∇ ln |r − r1| · ∇ ln |r − r2|. The interaction en-
ergy E12 = ∫

d2r E12 involves a two-dimensional integral,
which may be computed using the divergence theorem and the
two-dimensional Coulomb Green’s function G2(r) = − ln(r)
that satisfies the equation ∇2G2(r) = −2πδ(2)(r) [equiva-
lently, ∇2 ln r = 2πδ(2)(r)]. As a result,

E12 = q1q2
2πh̄2n

M
ln

1

|r1 − r2| , (14)

which is just the interaction energy Ṽ12(r12) from Eq. (7).
Hence the total Lagrangian becomes

L = h̄πn(q1 ẑ × ṙ1 · r1 + q2 ẑ × ṙ2 · r2)

− q1q2
2πh̄2n

M
ln

1

|r1 − r2| . (15)

Focus on vortex 1, when ∂L/∂ ṙ1 = −h̄πnq1 ẑ × r1. The
Euler-Lagrange equation (d/dt)(∂L/∂ ṙ1) = ∂L/∂ r1 yields
the same dynamics as found in Eqs. (4) and (5).

Note the unusual feature that the equations of vortex
dynamics are first order in time, with no term associated with
vortex mass and acceleration. For a system of many vortices
in unbounded space, one can define a Hamiltonian H =
1
2

∑
i �=j Ṽij (rij ) that depends on all the vortex coordinates [14].

The equations of vortex dynamics have a Hamiltonian form
with xi and yi as canonical coordinates. In the presence of
boundaries, the factor ln(1/rij ) is replaced by the appropriate
Green’s function G(r i ,rj ) that satisfies the relevant boundary
condition [15].

IV. DOMAIN WALL OF RELATIVE PHASE

Son and Stephanov (SS) [5] emphasize that two uniform
interacting condensates have two basic normal modes, anal-
ogous to those of two coupled pendula, namely in phase and
out of phase. In the first mode, the total density n couples
strongly to the overall phase S1 + S2; in the second mode,
the density difference n1 − n2 couples strongly to the relative
phase S1 − S2.

For the in-phase mode, the Euler-Lagrange equation for
the overall phase yields a conservation equation involving
the density-weighted mean phase gradient n1∇S1 + n2∇S2.
Correspondingly, the Euler-Lagrange equation for n yields
a Bernoulli-like equation. Taking plane-wave amplitudes
∝ei(k·r−ωt) and ignoring the small coupling to the out-of-
phase mode give the expected Bogoliubov dispersion rela-
tion h̄2ω2

k ≈ 2εkng + ε2
k , where εk = h̄2k2/(2M) and δg12 is

ignored relative to the much larger g. The long-wavelength
dispersion relation is linear, with the usual speed of sound v =√

ng/M , and the crossover between the two terms determines
the healing length ξ = 1

2h̄/
√

Mng ∼ 0.2 μm quoting the
typical value from SS at the end of Sec. II (note that their
definition for ξ is smaller by a factor

√
2 than the conventional

one given near the end of Sec. II).
As emphasized by SS, the out-of-phase mode is more

unusual, for it involves the Rabi coupling that depends
on h̄�

√
n1n2 cos(S1 − S2). A similar procedure for � = 0

again gives a Bogoliubov dispersion relation with a smaller
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squared speed of sound v2
12 ≈ 2(δg12/M) n1n2/n, involving

the quantity δg12 = g − g12 instead of the usual interaction
constant g. The corresponding healing length now becomes
ξ12 ≈ h̄

√
n/(8Mδg12n1n2) ∼ 3 μm, again taking the value

from SS. When the coherent Rabi coupling � is added, the
out-of-phase mode acquires a frequency gap ∝√

�δg12n/h̄

for small � [5].
In Sec. III of SS, they study a model with constant and

uniform three-dimensional densities n1 and n2, focusing on
the variations in phases over length scales large compared to
ξ12. The resulting energy-density functional follows directly
from Eq. (1)

E[S1,S2] = h̄2

2M
[n1(∇S1)2 + n2(∇S2)2]

−h̄�
√

n1n2 cos(S1 − S2). (16)

The two phases S1 and S2 obey coupled sine-Gordon
equations that occur, for example, in Josephson’s phenomeno-
logical field theory of the phase difference between two
superconducting half spaces separated by a thin insulating
layer [16]. In particular, a one-dimensional domain wall
S1 − S2 = S12 has the simple analytic expression

S12(y) = 4 arctan eky, with k2 = M�

h̄

n√
n1n2

, (17)

where y is the coordinate perpendicular to the domain
wall. The thickness k−1 of the domain wall is comparable
with the Rabi oscillator length l� = √

h̄/(M�), which here
sets the basic length scale. If the relative phase starts at 0 for
large negative y, then the net change in relative phase across
the domain wall is 2π . It is not difficult to show that the domain
wall has a surface tension (energy per unit area)

σ = 8h̄� l� n

(
n1n2

n2

)3/4

= 8

√
h̄3�

M
n

(
n1n2

n2

)3/4

, (18)

which is Eq. (25) of SS.
Toward the end of Sec. III, SS point out that their

approximation of uniform densities n1 and n2 fails when
l� � ξ12, since the full energy functional allows the domain
wall to unwind. Their Appendix A studies this problem
of metastability in detail, confirming the above qualitative
estimate.

The coherent coupling also can induce time-dependent Rabi
oscillations between the two states ψ1 and ψ2, as discussed
briefly in SS below their Eq. (10) and seen experimentally, for
example, in Ref. [2]. SS include a related effect in their study
of the stationary domain wall of relative phase (Sec. IV), where
the total current is conserved, with the currents of the two com-
ponents having opposite contributions that cancel. Our Sec. VI
studies the corresponding behavior for a single trapped vortex
in a two-component coherently coupled condensate. Here,
the vorticity transfers coherently and periodically between
the two condensates, with no associated population transfer.
Section VII studies the population and vorticity transfer in
more detail.

V. TWO VORTICES IN TWO UNBOUNDED
COHERENTLY COUPLED BECS

How does this Rabi-coupling energy affect the motion of
one or more vortices in a uniform two-component BEC? In the
following, we use the time-dependent variational Lagrangian
formalism to provide approximate answers in both limits of
large l� = √

h̄/(M�) (namely weak Rabi coupling) and small
l� (namely strong Rabi coupling).

For weak coupling, assume that each component ψj =√
nje

iSj has a vortex with winding number qj = ±1 at the two-
dimensional position rj , with phase given in Eq. (12). In the
absence of coherent Rabi coupling, each vortex has the familiar
phase pattern with radial lines of constant phase stretching
outward from the source at rj . The kinetic energy of each
vortex appears separately in Eq. (1), so that they are uncoupled,
apart from the small effect of their well-separated cores. A
weak Rabi coupling with l� � r12 changes this picture only
for large distances, distorting the vortex phase patterns to
link the two vortices with a domain wall of large thickness
∼l�. In this limit, use the unperturbed phases to compute the
coupling energy [an integral of h̄�

√
n1n2 cos(S1 − S2) over

the two-dimensional space]. The resulting coupling energy E�

is positive and proportional to r2
12 with logarithmic corrections,

leading to an attractive force F ∝ r21.
In contrast, the strong-coupling energy E� ≈ σr12 follows

from the SS analysis quoted above in Eq. (18). We here study
how vortices in coherently coupled BECs respond to such
forces. Section III of SS argues that on scales that are large
compared to ξ12, the density of each component can be taken as
a spatial constant, so that the relevant parts of Eq. (1) become

L = −h̄n1Ṡ1 − h̄n2Ṡ2 − h̄2

2M
n1(∇S1)2 − h̄2

2M
n2(∇S2)2

+h̄�
√

n1n2 cos(S1 − S2), (19)

which here omits any trapping potential.
As a simple and interesting example, consider the case

of a single vortex in each component at r1 and r2 with
circulations q1 = ±1 and q2 = ±1. The time-dependent part
of the Lagrangian obtained by integrating (19) is like that in
Eq. (15)

T = h̄π (q1n1 ẑ × ṙ1 · r1 + q2n2 ẑ × ṙ2 · r2), (20)

but the two vortices now exist in two different components,
each with its own number density. In addition, the integral
of the kinetic-energy density [the two terms proportional to
(∇Sj )2] yields only the two self-energies, for there is no
term involving ∇S1 · ∇S2. Hence these terms have no effect
on the dynamical motion. As a result, two vortices, one in
each component, remain stationary unless they are coherently
coupled by the Rabi energy

E� = −h̄�
√

n1n2

∫
d2r cos(S1 − S2). (21)

Independent of the strength of the coupling, this Rabi
energy E�(r12) acts like a two-dimensional central potential,
assuming that the system is unbounded and uniform (hence
translationally invariant). Equations (20) and (21) yield the
Lagrangian L = T − E�; it determines the dynamical equa-
tion of motion for each vortex. Vortex 1 in component 1
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obeys

2πh̄q1n1 ṙ1 = ẑ × F�
1 , (22)

where F�
1 = −∇1E�. Similarly,

2πh̄q2n2 ṙ2 = ẑ × F�
2 , (23)

where F�
2 = −∇2E� = −F�

1 .
By inspection, the motion conserves the vector quantity

q1n1r1 + q2n2r2. In addition, the relative vector r12 ≡ r1 − r2

obeys the dynamical equation

ṙ12 = q1n1 + q2n2

2πh̄q1q2n1n2
ẑ × F�

1 . (24)

As a simple example, consider two positive vortices with
q1 = q2 = 1. In this case, the corresponding density-weighted
centroid n1r1 + n2r2 remains fixed. In contrast, the relative
vector r12 satisfies

ṙ12 = n

2πh̄n1n2
ẑ × F�

1 , (25)

but the details depend on the explicit form of the Rabi coupling
energy E�(r12).

More generally, for two vortices with unit charges q1 and
q2, the center of motion rcm = 1

2 (r1 + r2) obeys the dynamical
equation

ṙcm = 1

4πh̄

q1n2 − q2n1

n1n2
ẑ × F�

1 . (26)

Specifically, for a vortex pair or vortex dipole with q1 = −q2 =
1, this result reduces to

ṙcm = 1

4πh̄

n

n1n2
ẑ × F�

1 , (27)

leading to a uniform translation perpendicular to the relative
vector r12.

A. Weak Rabi coupling

If the coherent coupling is weak, namely if l� = √
h̄/(M�)

is large compared to the intervortex separation r12 (and r12 �
ξ12), then the phase pattern of each vortex can be taken as
undisturbed over physically relevant distances. Thus, evaluate
the Lagrangian per unit length L = ∫

d2rL by integrating over
an unbounded two-dimensional Rabi-coupled two-component
condensate.

In the present limit of weak Rabi coupling, it suffices to
compute the energy E±

� of the coherent coupling using the
unperturbed phases of each component, where the product
q1q2 = ±1 determines the sign ±. Thus, it is necessary to
evaluate the integral

E±
� = h̄�

√
n1n2

∫
d2r[C± − cos (S1 − S2)], (28)

where C± is a constant that eliminates the leading divergence
of the integral; it depends only on the product q1q2: C+ = 1
but C− = 0.

Comparison with Eq. (12) shows that

cos Sj = x − xj

|r − rj | and sin Sj = qj

y − yj

|r − rj | . (29)

To simplify the calculation, choose (x1,y1) = (− 1
2 r12,0) and

(x2,y2) = ( 1
2 r12,0), so that the two vortices are symmetrically

placed on the x axis with separation r12. As a result,

cos(S1 − S2) = x2 − 1
4 r2

12 ± y2√(
x2 + 1

4 r2
12 + y2

)2 − x2r2
12

. (30)

To evaluate E±
� in Eq. (28), use plane polar coordinates

x = r cos θ and y = r sin θ , and introduce the dimensionless
variable u = 2r/r12, so that

E±
� = h̄�

4

√
n1n2 r2

12

∫ u0

0
udu

×
∫ 2π

0
dθ

[
C± − u2(cos2 θ ± sin2 θ ) − 1√

(u2 + 1)2 − 4u2 cos2 θ

]
. (31)

Here the radial integral diverges logarithmically at the upper
limit and u0 is a cutoff parameter.

The angular integral can be evaluated in terms of complete
elliptic integrals, and use of Landen’s transformation in the
appendix gives

E+
� ≈ π

2
h̄�

√
n1n2 r2

12 ln

(
4

r12

)
, (32)

for two vortices with the same sign, where  is a large-distance
cutoff, either the size of the container or the condensate.

A similar expansion for two vortices with opposite signs
yields

E−
� ≈ π

4
h̄�

√
n1n2 r2

12 ln

(
5.1361

r12

)
. (33)

Apart from the logarithmic cutoff, the dominant behavior is a
quadratic (harmonic) dependence on the separation r12 of the
vortices. Note that both results are positive and attractive (they
differ by roughly a factor of 2).

Let F�
1 = −∇1E

±
� be the force on vortex 1 arising from

the Rabi coupling. This force acts along −r12, toward vortex
2 and is always attractive. This behavior is quite different
from that for two vortices in classical hydrodynamics (or in a
one-component condensate), where the potential in Eq. (7) is
proportional to q1q2 ln(1/r12), namely positive and repulsive
for q1q2 = 1, but negative and attractive for q1q2 = −1.

To be specific, consider two positive vortices. The vector
r12 rotates around (n1r1 + n2r2)/n in a negative (clockwise)
sense at an angular velocity

�rot = − �n

2
√

n1n2

[
ln

(
4

r12

)
− 1

]
≈ −� ln

(
4

r12

)
, (34)

where the last form holds for n1 = n2 = n/2, and for /r12�1.
This rotation is opposite to the sense of rotation for two positive
vortices in classical hydrodynamics. As we will see below, we
and the authors of Ref. [17] also find a similar behavior in the
strong-coupling limit.

Next consider the two-component analog of a vortex pair
with q1 = 1 and q2 = −1. In this case, the density-weighted
vector n1r1 − n2r2 remains constant. In addition, Eq. (27)
shows that the center of motion rcm moves according to ṙcm =
− 1

8� (n/
√

n1n2) ẑ × r12[ln(5.1361/r12) − 1], namely in the
direction of flow between the two vortices. This motion
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has the same sense as a vortex pair or dipole in classical
hydrodynamics, but note that r12 itself rotates according to
Eq. (24) unless n1 = n2.

This dynamical motion for one vortex in each component
arises from the effective quadratic dependence on r12 in
Eqs. (32) and (33). The present approximation that the phase
field of each vortex extends far beyond their separation
distance can be considered a variational trial function for
the Lagrangian L. Hence this behavior should hold for
l� � r12 � ξ12. As the Rabi frequency increases (and the Rabi
oscillator length l� decreases), however, the situation becomes
quite different, because the domain wall of relative phase
significantly distorts the separate vortex phase patterns over
the scale l� = √

h̄/(M�).

B. Strong Rabi coupling

It is interesting also to consider the case of strong Rabi
coupling, when l� � r12. In this limit, the phase difference
S1 − S2 is confined to the domain wall, and the Rabi energy
becomes E� ≈ σr12, where σ is the surface energy in Eq. (18).
Correspondingly, the resulting force on vortex 1 is F�

1 =
−∇1E� = −σ r12/r12, again attractive and along the vector
−r12. For two positive vortices, one in each component,
Eq. (24) gives

ṙ12 = − n

n1n2

σ

2πh̄ r12
ẑ × r12, (35)

which predicts a rotation rate

�rot = − σn

2πh̄n1n2r12
= −4

√
2

π

�l�

r12
, (36)

in the negative (clockwise) sense. Here, the last form holds for
N1 = N2 = N/2.

Note that this result describes a uniform unbounded
condensate. The Trento group [17] studies two such vortices
symmetrically placed in a harmonic trap and finds the same
result for the rotation frequency �rot in the strong-coupling
limit [see their Eq. (5), and note that their d is 1

2 r12]. In this
strong-Rabi-coupling limit, the trap has negligible effect on
the dynamics. Such agreement lends credence to the present
Lagrangian approach.

It is also interesting to consider two oppositely charged
vortices (a vortex pair or vortex dipole, with q1 = −q2 = 1).
In the presence of coherent coupling, they move uniformly
in the same direction as classical vortices do because both
situations involve attractive forces. Specifically, in the strong-
coupling regime when the Rabi coupling energy is E�(r12) ≈
σr12, Eq. (27) readily yields the translational speed of the pair

vpair = σ

4πh̄

n

n1n2
= 2

√
2 � l�

π
= 4

√
2

l�

T
, (37)

where the last two results hold for n1 = n2 = n/2, and
T = 2π/� is the Rabi period.

Neely et al. [10] have observed similar dynamical mo-
tion for a vortex pair or dipole in single-component 87Rb
disk-shaped condensate. In practice, the boundaries tend to
dominate the dynamics: in the single-component case, as the
pair approaches the Thomas-Fermi (TF) radius, the vortices
separate and follow the boundary, eventually reuniting on the

opposite side. This periodic motion has been observed for one
full cycle.

C. Numerical results

The simulations we show below have been obtained ex-
ploiting a Trotter-Suzuki solver we recently developed [18,19].
The Trotter-Suzuki formula provides an approximation to the
operator evolution that preserves its unitarity, while having a
low computational complexity. This results in a stable, high-
precision, and fast evolution. The code is publicly available
under an open source license and it is written in C++,
with a PYTHON wrapper for ease of use [20]. The code has
been optimized to use parallel and distributed computational
resources, providing an almost linear scaling across the nodes
of a supercomputer. Nonetheless, most of the results presented
here are obtained on a standard desktop machine. To facilitate
reproduction of the results, a complete computational appendix
is available online [21].

In this section, we wish to study the motion of two
vortices in a uniform two-component BEC, one vortex per
component. We consider equal populations N1 = N2 = N/2,
equal masses, equal intracomponent interaction constants
(g11 = g22 ≡ g), and vanishing intercomponent interaction
constant (g12 = 0). For numerical purposes, we enclose the
two components in a circular well with a hard wall located at
radius R. We chose the radius R to be much greater than the
vortex separation r12, and we considered relatively strong inter-
actions gii , so that the vortex core radius ∼ξ is smaller than r12.
In this way, we ensure that the two vortices are well separated
from each other and move in a relatively flat density profile.

We initialize the system with two corotating vortices located
symmetrically across the center of the container, at positions
(±r12/2,0). The vortices, and the corresponding domain wall
in the relative phase between them, are obtained performing
a short imaginary time evolution, which proceeds along the
following steps: (i) we start with normalized wave functions
which take a constant value inside the circular well, ψ1 =
ψ2 =

√
1/πR2, and vanish outside; (ii) we phase imprint

two corotating vortices, one per component, so that ψj →
eiSj ψj , where Sj is given in Eq. (12), and r1 = −r2 = r12/2;
(iii) we start the imaginary time evolution, in the presence of
an additional pinning potential (two sharply peaked Gaussians
centered at ±r1) aimed at keeping the vortex cores stationary
(otherwise, they would approach each other during the imagi-
nary time evolution). Once the gas has stabilized, we remove
the pinning potential, and we let the system evolve in real time.
The precession frequency �rot of the vector r12 is obtained by
averaging typically over ∼5 full revolutions. Our results are
summarized in Fig. 1.

At strong Rabi coupling, where l� � r12, the precession
frequency is negative (i.e., the vortices precess in a direction
opposite to the one of their circulation), and it becomes
independent of the radius of the container, nicely converging
to the analytical prediction, Eq. (36). The results are also
independent of the strength of the interaction between atoms if
the coherence length is sufficiently small. Indeed, we observe
that for very large Rabi frequency (l� < r12/2) the domain wall
between the vortices rapidly breaks up in the case ξ = r12/10,
while it remains relatively stable over the whole frequency
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FIG. 1. Precession frequency of two corotating vortices, one per component. The lines indicate results obtained for different radii R of the
circular container (from top to bottom, R/r12 = 2, 3.5, 5); solid lines are results with ξ = r12/10, and dashed ones results with ξ = r12/40.
The dash-dotted line is the strong-coupling limit, Eq. (36). The diamonds are instead results for counter-rotating vortices: for large Rabi
coupling vortex-antivortex pairs move uniformly, without precessing. (Right) The same data are plotted with different axes, to highlight the
behavior at weak coupling. Here ω12 ≡ h̄/Mr2

12, and the dots are the result expected for a single vortex in a single-component BEC inside a
cylinder, Eq. (38).

range studied when ξ = r12/40. Computations with small
ξ are particularly expensive, as they require a very closely
spaced computational grid to sample correctly the rapidly
varying vortex core. In order to always satisfy the inequality
l� � ξ which ensures stable domain walls, we therefore
considered two values of the intracomponent interaction
constants, depending on the value of l�. In particular, we used
ξ = r12/10 for l� > r12/2, and ξ = r12/40 for l� < r12/2.

For weak coupling, instead, our numerical results indicate
a behavior that differs from the one discussed in Sec. V A.
The presence of a container (necessary in our simulations)
rules out the observation of the logarithmic behavior predicted
in Eq. (34). At large l� we find that the precession frequency
changes sign and saturates to a small, positive value, somewhat
in agreement with that found in Ref. [17]. For sufficiently large
containers, our data converge to the result expected for a single
vortex in a single-component BEC, located inside a cylinder,
at distance r12/2 from its axis. This configuration is discussed,
e.g., in Refs. [22,23], and the precession frequency is predicted
to be

�rot = h̄

M
(
R2 − r2

12

/
4
) , (38)

a result which is displayed with colored dots in the right panel
of Fig. 1.

Finally, we simulated the case of oppositely charged
vortices, with q1 = −q2 = 1. Once more, the simulations
reproduce the predicted behavior in considerable detail. In
particular, away from the boundaries the vortex dipole evolves
with vanishing precession frequency; see the diamonds in
the left panel of Fig. 1. The vortex pair instead translates
uniformly, and in the strong-coupling limit its velocity con-
verges to the analytical prediction given in Eq. (37); see
Fig. 2. Approaching the edge of the computational grid, where
hard-wall boundary conditions are imposed, the dynamics
gets more involved, however. In particular, over some long

simulations we observed that two extra vortices are nucleated
at the boundary and enter the condensate. The new vortices,
one per component, have charges q1 = −q2 = −1, opposite
to the charges of the initial vortices. At this point, the relative
phase displays two narrow domain walls, one connecting
the two vortices with q1 = q2 = 1, and the other joining
the two vortices with q1 = q2 = −1. If the two pairs are
sufficiently far apart, these will behave independently, each
pair precessing smoothly around its own center of mass, as
discussed earlier in this section. In agreement with theory, the
pair of positive (negative) vortices is found to precess in the
clockwise (anticlockwise) direction. A video of the complete
simulation is available in the Supplemental Material [24].
Note that this behavior agrees with that predicted by Son
and Stephanov [5], namely that domain walls naturally run
between two same-sign vortices, one in each component.

FIG. 2. Translational velocity of two oppositely charged vortices,
one in each component, in a circular container of radius R. The
simulation result, shown with diamonds, is compared to the analytical
formula Eq. (37), valid for strong Rabi coupling.
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FIG. 3. Contours of equal dimensionless energy Ẽ, for N1 = N2, φ̄ = 0, and R/ξ = 5. From left to right, M�R2/h̄ = 0,1,10. For φ̄ �= 0,
the contours would be rotated in the plane by an angle φ̄.

VI. SINGLE VORTEX IN TRAPPED TWO-COMPONENT
CONDENSATE WITH COHERENT COUPLING

One other case for coherent Rabi coupling also merits
careful study: a single vortex at r1 with |q1| = 1 in component
1 of a trapped Thomas-Fermi two-component condensate. The
nonuniform density arising from the harmonic trap potential
exerts a force on the vortex so that it precesses in the same
sense as its circulation, but the effect of the Rabi-induced
harmonic coupling requires a detailed analysis. In addition,
we briefly consider the similar but simpler case of a vortex
in one component of a two-component condensate with
weak interaction constants, where a Gaussian variational trial
function is appropriate.

A. Analytical results for strong-coupling Thomas-Fermi limit

The normalized two-component trial function here has the
form used in studying the motion of a vortex in a trapped
two-dimensional spin-orbit coupled condensate [25]

�(r) =
(

2

πR2

)1/2(
1 − r2

R2

)1/2
(√

N1 eiS1

√
N2 eiφ̄

)
, (39)

where S1 is the phase given in Eq. (12) for a vortex in
component 1 at position r1 with circulation q1 and φ̄ is an
additional phase, initially taken as constant. Our numerical
studies show clearly, however, that φ̄ varies linearly with time,
and we henceforth assume φ̄ = κt , where κ is constant.

The evaluation of the trap energy and interaction energy
for g1 = g2 = g12 = 4πah̄2/(

√
2πMdz) is given in Ref. [25],

yielding the variational estimate

R4 = 16√
2π

Nad4
⊥

dz

(40)

for the Thomas-Fermi condensate radius R. Since these
contributions have no effect on the vortex motion, they are
ignored in the subsequent study.

The resulting Lagrangian density (19) now contains only
contributions from the time- and space-varying phase S1,
and the time-dependent term in the Lagrangian follows from

Eq. (11) of Ref. [25],

T = −2h̄N1

R2
q1

(
1 − 1

2
u2

1

)
ṙ1 × ẑ · r1

= −2h̄N1q1φ̇1

(
u2

1 − 1

2
u4

1

)
, (41)

where we omit a constant term arising from the time
dependence of φ̄ = κt . Here the second form uses plane
polar coordinates r1 = (r1,φ1), with u1 = r1/R. Similarly, the
kinetic energy of the circulating flow around the vortex follows
from Eq. (10) of Ref. [25]

Ek = h̄2N1

MR2

{(
1 − u2

1

)
ln

[(
1 − u2

1

)
R2

ξ 2

]
+ 2u2

1 − 1

}
. (42)

Finally, the Rabi coupling energy involves the integral of
−h̄�

√
n1n2 cos(S1 − κt). This integral also appears in the

study of vortices in spin-orbit-coupled BECs; it is evaluated
in Eqs. (28) and (29) of Ref. [25] for the present case of a
half-quantum vortex, namely one vortex in one component
and no vortex in the other. The resulting Rabi coupling energy
becomes

E� = h̄�
√

N1N2 |f (u1)| cos(φ1 − κt), (43)

where we have |f (u1)| ≈ 4
3u1 − cu3

1 and c = 4/3 −
128/(45π ) ≈ 0.428. Note that |f (u1)| vanishes for u1 = 0
and is positive for 0 � u1 � 1 (the relevant range). Here the
two components have a relative phase φ̄ = κt , and the last
factor cos(φ1 − κt) rotates the contours in the center and right
part of Fig. 3 through an angle κt . The total energy is the sum
E = Ek + E�. Both terms are positive, but Ek is isotropic and
decreases with increasing u1, whereas E� contains a factor
cos(φ1 − κt).

It is convenient to normalize all these terms by the
characteristic energy h̄2N1/(MR2), in which case we find the
dimensionless quantity

T̃ = −2MR2

h̄
q1φ̇1

(
u2

1 − 1

2
u4

1

)
. (44)
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Similarly, the dimensionless total energy is

Ẽ(u1,φ1) = (
1 − u2

1

)[
2 ln

(
R

ξ

)
+ ln

(
1 − u2

1

)] + 2u2
1 − 1

+ M�R2

h̄

√
N2

N1
|f (u1)| cos(φ1 − κt). (45)

The dimensionless Lagrangian thus becomes L̃ = T̃ − Ẽ.
Since L̃ does not involve u̇1, the Euler-Lagrange equation

for u1 takes the simple form ∂L̃/∂u1 = 0, which yields the
effective precession rate

φ̇1 = − h̄

2MR2

q1

2u1
(
1 − u2

1

) ∂Ẽ

∂u1

= h̄

MR2

q1

1 − u2
1

[
ln

(
R

ξ

)
+ 1

2
ln

(
1 − u2

1

) − 1

2

]

− �q1

4u1
(
1 − u2

1

)
√

N2

N1
cos(φ1 − κt)

d|f (u1)|
du1

. (46)

The corresponding Euler-Lagrange equation for φ1 be-
comes

u̇1 = h̄

2MR2

q1

2u1
(
1 − u2

1

) ∂Ẽ

∂φ1

= − �q1

4u1
(
1 − u2

1

)
√

N2

N1
|f (u1)| sin(φ1 − κt). (47)

Note that dẼ/dt = (∂u1Ẽ)u̇1 + (∂φ1Ẽ)φ̇1 + ∂t Ẽ no longer
vanishes because of the last term arising from the explicit
time dependence of φ̄. Nevertheless, it is still instructive
to exhibit contours of constant Ẽ. Figure 3 shows contour
plots of Ẽ for N1 = N2, illustrating how the inclusion of the
Rabi coupling term affects these energy contours. Left side
is for M�R2/h̄ = 0, with concentric axisymmetric contours;
center is for M�R2/h̄ = 1, showing displaced nearly circular
contours; and right side is for M�R2/h̄ = 10. Note that
in these latter cases, some or all trajectories will leave
the condensate. For small Rabi coupling with M�R2/h̄ =
R2/l2

� � 1, the perturbation has a time-dependent dipolar
form ∝ cos(φ1 − κt), corresponding to a lateral displacement
of the circular contours to first order in the small parameter.

The Amherst group [26] has developed a valuable thermal-
quench technique that creates one vortex in a single-
component BEC with probability about 25%. There is no ob-
vious reason why this rapid thermal-quench technique should
not work for a two-component coherently coupled condensate.
It may be simplest first to create a half-quantum vortex and
then turn on the Rabi coupling, but other experimental options
could be preferable.

B. Analytical results for weak coupling

The previous Sec. VI A used the Thomas-Fermi model,
which applies to a strong-coupling limit with R/d⊥ � 1,
where as before R is the Thomas-Fermi radius and d⊥ is
the two-dimensional oscillator length. The present weak-
interaction case involves a quite different approximation,

using the low-lying states of the two-dimensional harmonic
oscillator as a basis [27,28].

We first examine two vortex-free components that set the
basic energy EGP0. As before, the condensates are assumed to
be tightly confined in the axial (perpendicular) direction. The
axial kinetic and trap energy are an overall shift and will be
ignored. The energy functional is given by

EGP =
∫

d2r

⎡
⎣ h̄2

2M
|∇⊥�|2 + 1

2
Mω2

⊥r2|�|2

+ 1

2

∑
ij

gijninj − 1

2
h̄�(ψ∗

1 ψ2 + ψ∗
2 ψ1)

⎤
⎦, (48)

where � is a two-component vector with elements (ψ1,ψ2)
and ni = |ψi |2 is the particle density of the ith component.

In the absence of a vortex, take a normalized Gaussian trial
function with a variable radius scaled by the parameter β

�0(r) = 1

d⊥β
√

π
exp

(
− r2

2d2
⊥β2

)(√
N1√
N2

)
. (49)

Evaluating the ground-state energy is straightforward and
gives

EGP0 = h̄ω⊥N

2

(
β2 + 1 + G

β2

)
− h̄�

√
N1N2, (50)

where the first term (in parentheses) is the trap energy, the
kinetic energy, and the interaction energy, and the Rabi energy
is simply another constant shift. The dimensionless interaction
contribution is

G = 1

2πd2
⊥h̄ω⊥N

(
g11N

2
1 + g22N

2
2 + 2g12N1N2

)
. (51)

Minimization with respect to β readily yields the expansion
parameter

β4 = 1 + G, (52)

which replaces Eq. (40) for the ratio R4/d4
⊥ in the TF version.

As a variational treatment, this value of β is chosen as
fixed even in the presence of a vortex. Note that positive
interactions indeed expand the condensate. In the limit of large
G, the kinetic energy is negligible, and this model becomes a
Gaussian approximation for the TF limit.

For a TF condensate, the vortex core size (∼ξ � d⊥)
is the small healing length. Hence, the main effect is the
phase S1 associated with a vortex. For the weak-coupling
case, however, the core size is comparable with the trap
oscillator length d⊥, which effectively replaces the healing
length when gn � μ ∼ h̄ω⊥ in a one-component condensate.
Use the normalized one-component ground state χ0(r) =
(d⊥β

√
π)−1 exp(−r2/2d2

⊥β2), and the first excited state with
a central positive vortex χ1(r) = (z/d⊥β)χ0(r), where z =
x + iy = reiφ . A linear combination of these two states
∝(z − z1)χ0 characterizes a single vortex located at z1 = x1 +
iy1 = r1e

iφ1 in plane-polar coordinates. Note that this state has
a node at z = z1, and the phase of the wave function increases
by 2π on once encircling the node in the positive sense.

Introduce dimensionless units with d⊥ as the length scale,
h̄ω⊥ as the energy scale, and ω−1

⊥ as the time scale. In this
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way, the trial state �1(r) for a vortex in component 1 located
at complex coordinate z1 has the two normalized components:

ψ1(r) =
√

N1

β

√
β2 + r2

1

√
π

(z − z1) e−r2/2β2
,

ψ2(r) =
√

N2

β
√

π
e−r2/2β2

eiφ̄, (53)

where again φ̄ = κt based on our numerical studies.
With the same dimensionless variables, and omitting a

constant term arising from the time dependence of φ̄ = κt , the
time-dependent part of the Lagrangian involves only ∂ψ1/∂t ,
and one finds

T = − N1 r2
1

β2 + r2
1

∂φ1

∂t
; (54)

this expression should be compared with Eq. (41) for the TF
limit, especially the last form (note that u1 there is effectively
r1 here, and that the extra quartic term there reflects the TF
condensate profile).

The relevant GP vortex energy for a weak-coupling system
is the difference between the GP energy EGP1 evaluated with
�1 in Eq. (48) and the ground-state energy Eq. (50). A
straightforward analysis gives

Ev
GP = N1(1 + β4)

2
(
β2 + r2

1

)︸ ︷︷ ︸
kinetic+trap

− g12N1N2

2
(
β2 + r2

1

)
2π︸ ︷︷ ︸

interspecies

− g1N
2
1 β2

4
(
β2 + r2

1

)2
2π︸ ︷︷ ︸

intraspecies

+ �

√
N1N2

β2 + r2
1

r1 cos(φ1 − κt)

︸ ︷︷ ︸
Rabi

. (55)

Thus the total Lagrangian for the vortex dynamics has the same
form as in the TF limit

L = T − Ev
GP, (56)

where T follows from Eq. (54).
The Euler-Lagrange equations for L readily provide the

dynamical equations for the motion of the vortex in this weak-
coupling model

dφ1

dt
= 1 + β4

2β2
− g12N2

4πβ2
− g1N1

4π
(
β2 + r2

1

)
− �

2

√
N2

N1

√
β2 + r2

1

r1
cos(φ1 − κt) (57)

and

dr1

dt
= − �

2β2

√
N2

N1

(
β2 + r2

1

)3/2
sin(φ1 − κt). (58)

If there is no Rabi coupling, then Eq. (57) shows that the vortex
orbits are concentric circles. Evidently, repulsive interactions
act to reduce the precession frequency, and the details depend
on the assumed values for the set gij . Note that the precession
frequency in the TF limit is of order h̄/(MR2) ln(R/ξ ),
which is much smaller than h̄/(Md2

⊥) = ω⊥, so that such a
reduction is to be expected. It is intriguing to observe that

attractive interactions (with negative gij ) would act to increase
the precession frequency. Whether such an effect would be
observable remains an open question.

C. Numerical results

To illustrate the coherent oscillations of vorticity induced by
the Rabi coupling �, we consider a two-component BEC with
equal populations (N1 = N2 = N/2), interaction strengths
characterized by g12 = g, in a two-dimensional harmonic trap
of frequency ω⊥. We prepare the system by phase imprinting a
single vortex with positive circulation in the center of the first
component, and we find the corresponding ground state by
performing a short evolution in imaginary time in the absence
of Rabi coupling, which allows the formation of a vortex core
with the suitable profile at the center of the first component.
After equilibration, we switch on the Rabi coupling and let the
system evolve in real time for a variable time t > 0.

The dynamics we observe is summarized in Fig. 4. In
the simulation, we have chosen a Rabi coupling such that
R2/l2

� ≈ 10. At t = 0, the vortex core starts at the center of
the first cloud. As time progresses, we observe that the vortex
core slowly drifts towards the edge of the first component and
exits the first component to reappear almost simultaneously
in the second. A pair of vortices, one in each component, is
actually visible for a brief interval of time centered around
(2n + 1)T/4, with n = 0,1,2, . . ., where T = 2π/�. After
half a Rabi period (i.e., at t = T/2, as shown in the central
row of the Fig. 4), the vortex core sits right in the middle
of n2, and after a full Rabi cycle the vortex has returned
to its starting position, at the center of n1 (bottom row of
the Fig. 4). This coherent transfer of vorticity repeats itself
rather uniformly over time. In various simulations, we have
for, example, observed ten complete cycles. Related effects
have been discussed theoretically in toroidal traps in Ref. [9]
and in harmonic traps in Ref. [17].

In each panel of Fig. 4, we plot also the analytical prediction
for the trajectory of the vortex (continuous lines), as given by
Eqs. (46) and (47). In this case, the analytical equations were
solved using κ = 0.485ω⊥, the value which minimizes the
mismatch between the simulated and analytical trajectories
over five Rabi periods. The vortex core follows very closely
the analytical trajectory, with a slight mismatch only visible
at the border of the condensate, where the Thomas-Fermi
approximation is not appropriate.

In the case of weaker interactions, we observe a very similar
dynamics, displaying coherent transfer of vorticity over many
periods. An example of weak coupling dynamics is shown
in Fig. 5. Here, the analytical trajectories of the vortices are
given by the solution of Eqs. (57) and (58), and we have chosen
κ = 0.93 to minimize the difference between the predicted and
simulated trajectories over five Rabi periods.

We wish now to discuss the dependence of κ on the
interaction strength. In Eqs. (39) and (53) we introduced φ̄, the
global phase difference between the two components. To a first
approximation, φ̄ varies in time due to the energy difference
between the first and second components: φ̄ = �Et/h̄. In the
limit gN = 0, the second component is in the ground state
with energy h̄ω⊥, whereas the first has a vortex and its energy
is 2h̄ω⊥; hence �E = h̄ω⊥. In general, the vortex energy in
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FIG. 4. Transfer of vorticity in a harmonically trapped two-component BEC, in the presence of a Rabi frequency � = 2ω⊥. In this simulation
we used a relatively strong coupling, gN = g12N = 40h̄2/M , so that R2/l2

� ≈ 10 and (R/d⊥)4 ≈ 50. From left to right, the columns show,
respectively, the particle densities n1 and n2 (arbitrary units, with brighter colors indicating higher densities), the phase S1 of ψ1, and the phase
difference S1 − S2 at given times: from top to bottom, t/T = {0, 0.25, 0.5, 0.75, 1}, with T = 2π/� the Rabi period. Markers indicate the
trajectory of the vortex core, up to the time at which the screenshot is taken (circles and squares for vortex core in first and second components
respectively). The color of the markers indicate at what (past) time the core was at that specific position. Top row: initial condition, with a
vortex at the center of the first component. Second row: the system imaged after one quarter of a Rabi period (t = T/4). The vortex core
follows the trajectory marked by the symbols: from black (t = 0) to gray (t = T/4), it travels until the edge of the first component; just before
t = T/4, while the first vortex is still inside the first cloud, a second vortex enters the second cloud, and a domain wall in the relative phase is
clearly visible in the fourth column. Third row: after half a Rabi period (t = T/2), the first vortex has completely disappeared from the first
component, while the new one gradually migrates to the center of the second component. Fourth row: at t = 3T/4, two vortices are again
visible, one in each component, with a domain wall in-between them. Bottom row: after a full Rabi period (t = T ), the vortex leaves the second
component, reappears inside the first, and returns back to its center. Continuous lines show the predicted trajectory given by Eqs. (46) and (47),
for κ = 0.485ω⊥. A video of the complete simulation, running over five full Rabi cycles, is available in the Supplemental Material [24].
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FIG. 5. Dynamics at weak coupling (gN = g12N = 2h̄2/M): From left to right, we show the particle densities (arbitrary units) and phases
of first and second components of the BEC, after an evolution of half a Rabi period. Markers depict the numerical vortex trajectory, while
continuous lines show the predicted trajectory as given by Eqs. (57) and (58). The Rabi frequency is set to � = 2ω⊥, as in Fig. 4.

the weak-coupling limit is h̄ω⊥ = h̄2/(Md2
⊥). In the TF limit,

it is ∼Ch̄2/(MR2), where R is the TF radius and C is an
overall numerical factor that depends on the density profile and
a slowly varying logarithmic factor log(R/ξ ). In our model,
R4/d4

⊥ is given by the dimensionless ratio

R4

d4
⊥

= 4

π

NgM

h̄2 , (59)

which is small in the weak-coupling limit and large in the TF
limit. A simple interpolation formula gives

�E = h̄2

M

√
d4

⊥ + R4/C2
= h̄ω⊥√

1 + R4/(d4
⊥C2)

= h̄ω⊥√
1 + 4gNM/(πh̄2C2)

. (60)

FIG. 6. Dependence of κ on the coupling gN . Dots represent
the values of κ that minimize the difference between the simulated
trajectories, and the ones predicted by Eqs. (57) and (58) for the
weak coupling regime (gN < 20h̄2/M), or Eqs. (46) and (47) for
the strong coupling regime (gN > 20h̄2/M). For gN < 20h̄2/M we
used � = 2ω⊥, whereas for gN > 20h̄2/M we used � = 2ω⊥/5. In
all simulations we used g12 = g. We do not see variation of κ for
different values of �, and our results are in close agreement with
Eq. (60), plotted here with C = 4 as a continuous line.

Numerically, as we show in Fig. 6, we find indeed that
κ monotonically decreases with increasing interactions, and
it does not depend pronouncedly on the Rabi frequency �.
Assuming that �E = h̄κ and C = 4, Eq. (60) is in a very
good agreement with our simulations.

As discussed in Sec. VI A, the vortex energy is time
dependent, and its evolution is shown in Fig. 7. Note the
close agreement between the analytical expression Eq. (45)
evaluated at the instantaneous position in each component and
the corresponding simulated results.

When g12 � g, we observe instead a departure from the
coherent behavior observed here. In analogy with the results
from Ref. [9], we find that the system first displays incoherent
features (such as delays in the vortex transfer, and trajectories
which do not cross the cloud center), and for sufficiently
large g and small g12, the system finally enters a regime of
vortex trapping, where a vortex initially present inside a given
component remains forever inside that same one. A sample
video of incoherent dynamics, obtained with parameters as in
Fig. 4 but choosing this time g12 = g/5, may be found in the
Supplemental Material [24].

FIG. 7. The vortex energy Ẽ, given by Eq. (45), is evaluated at the
vortex core as a function of time for the simulation shown in Fig. 4.
The blue (dark gray) and green (light gray) lines depict, respectively,
the vortex energy Ẽ in components 1 and 2, evaluated at the solutions
of Eqs. (46) and (47), using κ = 0.485ω⊥. Dots represent Ẽ computed
using the position of the vortex given by the GPE simulation.
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VII. DYNAMICS OF THE COHERENT TRANSFER
OF POPULATION

We wish to study here the transfer of population (or
pseudospin dynamics) induced by a coherent Rabi coupling in
a two-component BEC, comparing specifically the case where
both components have a uniform phase to the case where
one component contains a vortex. Following Ref. [29], we
introduce the ansatz for the two components’ wave function

ψ1(t,r) =
√

N1(t)eiS1(t)�1(r),

ψ2(t,r) =
√

N2(t)eiS2(t)�2(r), (61)

with real �i(r). By inserting this ansatz in the coupled GP
equations, one may derive Josephson-type equations of motion
for the population imbalance η = (N2 − N1)/N and relative
phase S = S2 − S1:

d

dt
η = −k(1 − η2)1/2 sin(S) ≡ f (η,S),

d

dt
S = −(μ2 −μ1) + kη(1 − η2)−1/2 cos(S) ≡ g(η,S), (62)

where k = −�
∫

d2r �1(r)�2(r) is proportional to the Rabi
frequency and to the spatial overlap of the components. Taking
the second derivative of η, we have

d2

dt2
η = k

η√
1 − η2

η̇ sin(S) − k cos(S)
√

1 − η2Ṡ (63)

and using once more Eqs. (62) we find the alternative, more
transparent equation

d2

dt2
η = −k2η + (μ2 − μ1)k

√
1 − η2 cos(S). (64)

In uniform space, we have μ2 − μ1 = (g − g12)ηn, with
n = N/V . It is now not difficult to show that Eqs. (62)
support two kind of solutions: harmonic oscillations of the
population imbalance when (g − g12)η(0) cos S(0) < k and
anharmonic ones otherwise. The latter are still periodic, but
display four changes of curvature per period; see, e.g., the
thin blue line in the bottom panel of Fig. 8. Moreover, for a
gas with SU(2)-invariant interactions (i.e., with g12 = g) these
equations predict that the gas will perform undamped harmonic
oscillations with frequency exactly equal to �. This dynamics
is shown in Fig. 8, where we evolved an untrapped system
in imaginary time, reaching the ground state, and then let it
evolve. Our simulations follow very closely the predictions
of Eqs. (62). Whenever g12 � g, we see periodic oscillations
of the population imbalance that become harmonic and with
frequency � for g12 = g. The amplitude of the oscillation
depends on the phase difference between the two components.
In particular when g12 = g the dynamics of η is identical to
the one for a system with no interaction: The amplitude of the
oscillations is proportional to sin S(0), and the period coincides
with 2π/�, as shown in Fig. 8.

Harmonic oscillations of the population difference appear
also when an interacting gas is harmonically trapped. Figure 9
illustrates such a scenario, and our simulation is seen to be in
perfect agreement with Eqs. (62), with �i(r) the ground-state
wave function of the harmonic oscillator in component i.

FIG. 8. Pseudospin oscillation of Rabi-coupled BECs, obtained
by the numerical solution of the coupled GP equations in a square
box of area L2. As initial conditions we take the ground state
of the uncoupled BECs with N1 = N2 = N/2, gN = 40h̄2/M ,
and T = 2π/� = πML2/h̄. (Top) Dynamics of the population
imbalance η with g = g12, for various values of the initial phase
difference S(0). (Bottom) Evolution of the population imbalance
η at fixed phase difference S(0) = π/6, for different values of
the interspecies interaction g12; the pseudospin oscillations become
perfectly harmonic in the SU(2)-invariant case g12 = g.

FIG. 9. Evolution of population imbalance η and relative phase
S for two Rabi-coupled BECs in a harmonic trap. The results of our
simulations, shown with symbols, are compared with equations (62),
shown as lines. As initial conditions we took the ground state of
the uncoupled BECs with N1 = N2 = N/2 and S(0) = π/3. Here
gN = g12N = 40h̄2/M and T = π/ω.
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FIG. 10. Pseudospin oscillations in the presence of both trapping
and interactions. The dotted line displays the population imbalance
η for the simulation shown in Fig. 4: The transfer of vorticity we
observed there happens in complete absence of population transfer.
For comparison, the lines show the evolution obtained starting from
the same initial conditions, but without vortices in either component:
Solid green and dashed blue lines represent, respectively, the cases
where the relative phase at t = 0 is 0, and π/2.

Finally we compare the case of uniform phases with the
one where a single vortex is imprinted in a given trapped TF
component. Our results are summarized in Fig. 10. Here, we
have chosen the same interaction strengths and Rabi coupling
as in Fig. 4. The solid and dashed lines show the time
dependence of the population of the first component when
no vortex is present at t = 0: The relative phase is in this
case homogeneous across the cloud so that, in analogy with
that observed previously, pronounced oscillations are observed
when S(0) = π/2 (dashed blue line); the oscillations instead
disappear when S(0) = 0 (solid green line), as their amplitude
is proportional to sin[S(0)]. The dotted line displays instead
the evolution observed after phase imprinting a vortex in the
first component: The coherent transfer of vorticity observed in
Fig. 4 happens, to a very good approximation, in the absence
of pseudospin oscillations. This absence may be understood
by observing that, in the presence of vortices, it becomes
impossible to define a global relative phase between the two
components. A relative phase may still be defined locally, but
the latter will evolve uniformly from 0 to 2π along a path
encircling the origin, so that on one side of the trap center
one will find coherent transfer of particles from component
1 to 2, while an opposite and (approximately) equal transfer
will happen on the opposite side, yielding a globally vanishing
pseudospin oscillation.

VIII. DISCUSSION AND CONCLUSIONS

The present consideration of vortex dynamics starts from
classical hydrodynamics and then introduces the idea of log-
arithmic vortex interactions. In contrast, the time-dependent
variational Lagrangian formalism focuses on the phase S of
the condensate wave function for various components, and it
is worth examining this aspect in more detail.

The simplified Lagrangian density in Eq. (19) studies the
phase of each condensate S1 and S2, omitting any spatial and
temporal variation in the densities n1 and n2 along with the trap

potential. The time derivatives yield the time-dependent term
T in the Lagrangian, L = T − E, and the gradient terms yield
the kinetic term in the GP energy EGP. In the limit of relatively
weak Rabi rf coupling (l� � r12), it is natural to assume that the
phase functions are those of the pure vortex with Sj [r − rj (t)]
from Eq. (12). As a result, the time derivative becomes Ṡj =
−ṙj · ∇Sj . Thus ∇Sj determines both the time term T and the
kinetic energy part of E in the Lagrangian L = T − E.

The presence of Rabi rf coupling alters this picture because
it provides an additional term E� in the energy. This energy
gives rise to an additional force F� = −∇E� with different
dependence on the vortex separation and even a different
sign from that arising from the intervortex potential. Indeed,
for two positive vortices, one in each component of a two-
component unbounded condensate, the rotation rate is in the
negative sense. In contrast, two positive vortices in classical
hydrodynamics or in a one-component BEC would rotate in
the positive sense.

The picture changes significantly for strong Rabi coupling
l� � rij for uniform condensates (or l� � R for TF trapped
condensates). The coupling energy now varies linearly with
the vortex separation, and the rotation frequency in Eq. (36)
agrees with that found with somewhat different methods by
the Trento group [17].

The results of our numerical simulations closely match
the theoretical derivations. In particular, we have verified that
the rotation frequency of a pair of positive vortices changes
sign as a function of the applied Rabi frequency, and our
results converge to the theoretical prediction of the Lagrangian
formulation at strong Rabi coupling and to the value expected
for single off-centered vortices in a cylindrical container in the
opposite limit of weak Rabi coupling.

Moreover, we have verified that if a single vortex is
imprinted in only one of the components, the Rabi coupling
drives an interesting dynamics, where the vortex is coherently
transferred from one component to the other. Finally, we have
shown that this coherent transfer of vorticity happens with no
transfer of population.

The numerical results rely on an open source library [20],
and we wish to promote the practice of open science by making
the steps involved in the simulations available online [21]. This
will ensure a straightforward reproduction of the plots, and we
also hope that it will make it easier to extend our work.
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APPENDIX

This Appendix provides an analytical derivation of the
results given in Eqs. (32) and (33). It involves Landen
transformations for complete elliptic integrals. For the q1q2 =
+ case, a change of variable θ = π/2 − χ and symmetry yield
the relevant dimensionless integral

I+ = 4
∫ u0

0
u du

∫ π/2

0
dχ

[
1 − u2 − 1

u2 + 1

1√
1 − k2 sin2 χ

]

= 4
∫ u0

0
u du

[
π

2
− u2 − 1

u2 + 1
K(k)

]
, (A1)

where u0 = 2/r12. Here K(k) is the complete elliptic integral
of the first kind and k = 2u/(1 + u2) [note that K(k) is the
usual notation in mathematics, but it differs from EllipticK(k2)
in MATHEMATICA, which uses the variable k2 instead of k].

Elliptic integrals obey identities known as Landen trans-
formations [30]. For a given k < 1, they involve the sequence
of transformations k′ = √

1 − k2 followed by k1 = (1 − k′)/
(1 + k′). For example, if u2 < 1,

K

(
2u

1 + u2

)
= (1 + u2)K(u2), (A2)

whereas if u2 > 1,

K

(
2u

1 + u2

)
= (1 + u−2)K(u−2). (A3)

These results allow the previous integral to be rewritten in a
different form (it is necessary to separate the two regions u < 1
and u > 1, and the latter contains the cutoff) I+ = I+

< + I+
> .

The first integral is straightforward (change variable to
v = u2) and is simply a number

I+
< = 2

∫ 1

0
dv

[
π

2
+ K(v) − vK(v)

]
= π + 4G − 2, (A4)

where G ≈ 0.91597 is Catalan’s constant [31]. For the second
integral, the new variable v = u−2 gives

I+
> = 2

∫ 1

u−2
0

dv

[
π

2v2
− K(v)

v2
+ K(v)

v

]
. (A5)

In the limit u0 → ∞, the first two terms give a convergent
integral

∫ 1
0 dv v−2[π − 2K(v)] = −π + 2. The last term can

be written

≈ 2
∫ 1

0

dv

v

[
K(v) − π

2

]
+ 2π ln u0

= 2π ln 2 − 4G + 2π ln u0.

The sum of all the various terms gives the final result I+ ≈
2π ln(2u0) ≈ 2π ln(4/r12), leading to Eq. (32).

For the other integral I−, the same change of variable
θ = π/2 − χ gives

I− = 4
∫ u0

0
u du

∫ π/2

0
dχ

[
1 − 1

u2 + 1

1 + u2 − 2u2 sin2 χ√
1 − k2 sin2 χ

]
.

A bit of algebra shows that

I− = 2
∫ u0

0
u du[(1 − u2)E(k) + (1 + u2)K(k)], (A6)

where, as before, u0 = 2/r12, k = 2u/(u2 + 1), and E(k) is
the complete elliptic integral of the second kind.

The Landen transformation [30] now gives E(k) =
(1 + k′)E(k1) − k′K(k). In particular, if u2 < 1,

2[(1 − u2)E(k) + (1 + u2)K(k)] = 4E(u2). (A7)

In contrast, if u2 > 1, a similar analysis gives

2[(1 − u2)E(k) + (1 + u2)K(k)]

= 4

[
u2E

(
1

u2

)
+ 1 − u4

u2
K

(
1

u2

)]
. (A8)

Hence I− = I−
< + I−

> , and the second piece again contains
the divergent logarithmic part.

The first integral is a known quantity, and the variable v =
u2 gives

I−
< = 2

∫ 1

0
dv E(v) = 1 + 2G ≈ 2.83193. (A9)

For the second integral, the substitution v = 1/u2 yields a
logarithmic divergence near the origin. An expansion of the
integrand for small v gives the approximate behavior that can
be added and subtracted. In this way,

I−
> ≈ 2

∫ 1

0

dv

v3

[
E(v) + (v2 − 1)K(v) − πv2

4

]
+ π ln(u0).

Here, the first integral is finite, and the second term is
the logarithmic leading contribution π ln(2/r12). Numerical
integration gives I−

> ≈ 0.131053 + π ln(2/r12). The sum of
these various terms yields

I− ≈ π ln(2/r12) + 2.96298 ≈ π ln(5.1361/r12),

which is the value quoted in Eq. (33).
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I. B. Spielman, Nature (London) 462, 628 (2009).
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